欢迎投稿

今日深度:

redis请求转发的实现,

redis请求转发的实现,


Redis(十二):redis请求转发的实现
目录

  1. 集群模式下的命令转发如何实现?
  2. 主从模式的命令转发如何实现?
    3. 如何使用redis集群?

4. 通常的请求转发如何实现?
请求转发一般的原因为: 1. 该请求自身无法处理,需要转发给对应的服务器处理; 2. 为实现负载均衡,使用路由服务,选择目标实例进行转发;

在集群模式下,请求可以打到任何一台redis服务器上。然而并不是所有的服务器都会处理真正的请求,而是只有符合redis slot规则的实例才会处理真正的请求;

这就存在一个情况,当请求打到了一台不应该打到的redis实例上,它应该是要进行转发的。

那么,这个转发该如何做呢?

返回顶部

  1. 集群模式下的命令转发如何实现?

// server.c, 在统一处理请求时,会判断出集群模式,进行处理
int processCommand(client *c) {

...
/* If cluster is enabled perform the cluster redirection here.
 * However we don't perform the redirection if:
 * 1) The sender of this command is our master.
 * 2) The command has no key arguments. */
// 集群模下,根据 hashslot 找到对应的redis节点处理
if (server.cluster_enabled &&
    !(c->flags & CLIENT_MASTER) &&
    !(c->flags & CLIENT_LUA &&
      server.lua_caller->flags & CLIENT_MASTER) &&
    !(c->cmd->getkeys_proc == NULL && c->cmd->firstkey == 0))
{
    int hashslot;

    if (server.cluster->state != CLUSTER_OK) {
        flagTransaction(c);
        clusterRedirectClient(c,NULL,0,CLUSTER_REDIR_DOWN_STATE);
        return C_OK;
    } else {
        int error_code;
        // 查找相应的redis节点
        clusterNode *n = getNodeByQuery(c,c->cmd,c->argv,c->argc,&hashslot,&error_code);
        // 除非是应该自己处理的数据,否则响应数据节点不在此处,让客户端另外查找数据节点
        // 因此 redis 节点不做数据转发,只是提示客户再寻找
        // 客户端拿送返回的信息,再向对应的节点发起请求处理
        if (n == NULL || n != server.cluster->myself) {
            flagTransaction(c);
            clusterRedirectClient(c,n,hashslot,error_code);
            return C_OK;
        }
    }
}
...

}

// cluster.c, 查找key对应的redis节点
/* Return the pointer to the cluster node that is able to serve the command.

  • For the function to succeed the command should only target either:
    *
  • 1) A single key (even multiple times like LPOPRPUSH mylist mylist).
  • 2) Multiple keys in the same hash slot, while the slot is stable (no
  • resharding in progress).
    *
  • On success the function returns the node that is able to serve the request.
  • If the node is not 'myself' a redirection must be perfomed. The kind of
  • redirection is specified setting the integer passed by reference
  • 'error_code', which will be set to CLUSTER_REDIR_ASK or
  • CLUSTER_REDIR_MOVED.
    *
  • When the node is 'myself' 'error_code' is set to CLUSTER_REDIR_NONE.
    *
  • If the command fails NULL is returned, and the reason of the failure is
  • provided via 'error_code', which will be set to:
    *
  • CLUSTER_REDIR_CROSS_SLOT if the request contains multiple keys that
  • don't belong to the same hash slot.
    *
  • CLUSTER_REDIR_UNSTABLE if the request contains multiple keys
  • belonging to the same slot, but the slot is not stable (in migration or
  • importing state, likely because a resharding is in progress).
    *
  • CLUSTER_REDIR_DOWN_UNBOUND if the request addresses a slot which is
  • not bound to any node. In this case the cluster global state should be
  • already "down" but it is fragile to rely on the update of the global state,
  • so we also handle it here. */
    clusterNode getNodeByQuery(client c, struct redisCommand cmd, robj argv, int argc, int hashslot, int *error_code) {
    clusterNode *n = NULL;
    robj *firstkey = NULL;
    int multiple_keys = 0;
    multiState *ms, _ms;
    multiCmd mc;
    int i, slot = 0, migrating_slot = 0, importing_slot = 0, missing_keys = 0;

    / Set error code optimistically for the base case. /
    if (error_code) *error_code = CLUSTER_REDIR_NONE;

    /* We handle all the cases as if they were EXEC commands, so we have

    • a common code path for everything */
  1. (cmd->proc == execCommand) {
    /* If CLIENT_MULTI flag is not set EXEC is just going to return an

    * error. */

    if (!(c->flags & CLIENT_MULTI)) return myself;
    ms = &c->mstate;
    } else {
    /* In order to have a single codepath create a fake Multi State

    * structure if the client is not in MULTI/EXEC state, this way
    * we have a single codepath below. */

    ms = &_ms;
    _ms.commands = &mc;
    _ms.count = 1;
    mc.argv = argv;
    mc.argc = argc;
    mc.cmd = cmd;
    }

/* Check that all the keys are in the same hash slot, and obtain this

  • slot and the node associated. */
  1. (i = 0; i < ms->count; i++) {
    struct redisCommand *mcmd;
    robj **margv;
    int margc, *keyindex, numkeys, j;

    mcmd = ms->commands[i].cmd;
    margc = ms->commands[i].argc;
    margv = ms->commands[i].argv;
    // 获取所有的 keyIndex, 用于后续依次取 key
    keyindex = getKeysFromCommand(mcmd,margv,margc,&numkeys);
    for (j = 0; j < numkeys; j++) {

       robj *thiskey = margv[keyindex[j]];
       // 计算hashSlot, crc16 算法
       int thisslot = keyHashSlot((char*)thiskey->ptr,
                                  sdslen(thiskey->ptr));
    
       if (firstkey == NULL) {
           /* This is the first key we see. Check what is the slot
            * and node. */
           firstkey = thiskey;
           slot = thisslot;
           n = server.cluster->slots[slot];
    
           /* Error: If a slot is not served, we are in "cluster down"
            * state. However the state is yet to be updated, so this was
            * not trapped earlier in processCommand(). Report the same
            * error to the client. */
           if (n == NULL) {
               getKeysFreeResult(keyindex);
               if (error_code)
                   *error_code = CLUSTER_REDIR_DOWN_UNBOUND;
               return NULL;
           }
    
           /* If we are migrating or importing this slot, we need to check
            * if we have all the keys in the request (the only way we
            * can safely serve the request, otherwise we return a TRYAGAIN
            * error). To do so we set the importing/migrating state and
            * increment a counter for every missing key. */
           if (n == myself &&
               server.cluster->migrating_slots_to[slot] != NULL)
           {
               migrating_slot = 1;
           } else if (server.cluster->importing_slots_from[slot] != NULL) {
               importing_slot = 1;
           }
       } else {
           /* If it is not the first key, make sure it is exactly
            * the same key as the first we saw. */
           if (!equalStringObjects(firstkey,thiskey)) {
               if (slot != thisslot) {
                   /* Error: multiple keys from different slots. */
                   getKeysFreeResult(keyindex);
                   if (error_code)
                       *error_code = CLUSTER_REDIR_CROSS_SLOT;
                   return NULL;
               } else {
                   /* Flag this request as one with multiple different
                    * keys. */
                   multiple_keys = 1;
               }
           }
       }
    
       /* Migarting / Improrting slot? Count keys we don't have. */
       // 查找0号库是否存在该值,没找到则增加未命中率
       if ((migrating_slot || importing_slot) &&
           lookupKeyRead(&server.db[0],thiskey) == NULL)
       {
           missing_keys++;
       }

    }
    getKeysFreeResult(keyindex);
    }

/* No key at all in command? then we can serve the request

  • without redirections or errors. */
  1. (n == NULL) return myself;

/ Return the hashslot by reference. /
if (hashslot) *hashslot = slot;

/* MIGRATE always works in the context of the local node if the slot

  • is open (migrating or importing state). We need to be able to freely
  • move keys among instances in this case. */
  1. ((migrating_slot || importing_slot) && cmd->proc == migrateCommand)
    return myself;

/* If we don't have all the keys and we are migrating the slot, send

  • an ASK redirection. */
  1. (migrating_slot && missing_keys) {
    if (error_code) *error_code = CLUSTER_REDIR_ASK;
    return server.cluster->migrating_slots_to[slot];
    }

/* If we are receiving the slot, and the client correctly flagged the

  • request as "ASKING", we can serve the request. However if the request
  • involves multiple keys and we don't have them all, the only option is
  • to send a TRYAGAIN error. */
  1. (importing_slot &&
    (c->flags & CLIENT_ASKING || cmd->flags & CMD_ASKING))
    {
    if (multiple_keys && missing_keys) {

       if (error_code) *error_code = CLUSTER_REDIR_UNSTABLE;
       return NULL;

    } else {

       return myself;

    }
    }

/* Handle the read-only client case reading from a slave: if this

  • node is a slave and the request is about an hash slot our master
  • is serving, we can reply without redirection. */
  1. (c->flags & CLIENT_READONLY &&
    cmd->flags & CMD_READONLY &&
    nodeIsSlave(myself) &&
    myself->slaveof == n)
    {
    return myself;
    }

/* Base case: just return the right node. However if this node is not

  • myself, set error_code to MOVED since we need to issue a rediretion. */
  1. (n != myself && error_code) *error_code = CLUSTER_REDIR_MOVED;

return n;
}

// cluster.c, 计算hashSlot, 使用 crc16算法
// 特殊语法: {key_with_hash}key_without_hash
/* We have 16384 hash slots. The hash slot of a given key is obtained

  • as the least significant 14 bits of the crc16 of the key.
    *
  • However if the key contains the {...} pattern, only the part between
  • { and } is hashed. This may be useful in the future to force certain
  • keys to be in the same node (assuming no resharding is in progress). */
  1. int keyHashSlot(char *key, int keylen) {
    int s, e; / start-end indexes of { and } /

    for (s = 0; s < keylen; s++)

       if (key[s] == '{') break;
    

    / No '{' ? Hash the whole key. This is the base case. /
    if (s == keylen) return crc16(key,keylen) & 0x3FFF;

    / '{' found? Check if we have the corresponding '}'. /
    for (e = s+1; e < keylen; e++)

       if (key[e] == '}') break;
    

    / No '}' or nothing betweeen {} ? Hash the whole key. /
    if (e == keylen || e == s+1) return crc16(key,keylen) & 0x3FFF;

    /* If we are here there is both a { and a } on its right. Hash

    * what is in the middle between { and }. */

    return crc16(key+s+1,e-s-1) & 0x3FFF;
    }

// 根据状态值,响应客户端,数据节点不在本节点
/* Send the client the right redirection code, according to error_code

  • that should be set to one of CLUSTER_REDIR_* macros.
    *
  • If CLUSTER_REDIR_ASK or CLUSTER_REDIR_MOVED error codes
  • are used, then the node 'n' should not be NULL, but should be the
  • node we want to mention in the redirection. Moreover hashslot should
  • be set to the hash slot that caused the redirection. */
  1. clusterRedirectClient(client c, clusterNode n, int hashslot, int error_code) {
    if (error_code == CLUSTER_REDIR_CROSS_SLOT) {

       addReplySds(c,sdsnew("-CROSSSLOT Keys in request don't hash to the same slot\r\n"));

    } else if (error_code == CLUSTER_REDIR_UNSTABLE) {

       /* The request spawns mutliple keys in the same slot,
        * but the slot is not "stable" currently as there is
        * a migration or import in progress. */
       addReplySds(c,sdsnew("-TRYAGAIN Multiple keys request during rehashing of slot\r\n"));

    } else if (error_code == CLUSTER_REDIR_DOWN_STATE) {

       addReplySds(c,sdsnew("-CLUSTERDOWN The cluster is down\r\n"));

    } else if (error_code == CLUSTER_REDIR_DOWN_UNBOUND) {

       addReplySds(c,sdsnew("-CLUSTERDOWN Hash slot not served\r\n"));

    } else if (error_code == CLUSTER_REDIR_MOVED ||

              error_code == CLUSTER_REDIR_ASK)

    {

       // 当对应的数据节点不是自身,而且已经找到了应当处理的节点时,响应客户端对应信息
       // ASK错误说明数据正在迁移,不知道何时迁移完成,因此重定向是临时的,不应刷新slot缓存
       // MOVED错误重定向则是(相对)永久的,应刷新slot缓存
       addReplySds(c,sdscatprintf(sdsempty(),
           "-%s %d %s:%d\r\n",
           (error_code == CLUSTER_REDIR_ASK) ? "ASK" : "MOVED",
           hashslot,n->ip,n->port));

    } else {

       serverPanic("getNodeByQuery() unknown error.");

    }
    }

所以,redis集群模式下的请求转发,并非redis服务端直接转发请求,而是通过向客户端响应 转移指令,由客户端重新发起目标请求,从而实现命令转发的。

其实,redis做响应转移的处理,应只会发生在redis节点发生变更的时候,比如增加节点或减少节点时,redis为实现数据再均衡,才会出现。正常情况下,具体哪个数据应该请求向哪个redis节点,则完全由客户端负责。这也是集群的优势所在,各个数据节点只处理对应的范围数据。因此,需要客户端将服务端的slot存放规则或者位置缓存起来(通过 cluster slots 可以获取槽存放信息),从而实现向正确的节点请求操作。

返回顶部

  1. 主从模式的命令转发如何实现?
    主从模式下,只有主节点可以写请求,而从节点则负责同步主节点的数据即可。然而,在我们做读写分离的时候,从节点是可以承受读流量的。但是,如果写流程打到了从节点上,这是否又涉及到一个请求转发呢?我们来看一下:

// 主从的命令处理判断,也是在 processCommand 中统一处理的
int processCommand(client *c) {

...
/* Don't accept write commands if this is a read only slave. But
 * accept write commands if this is our master. */
// 针对从节点,只能接受读请求,如果是写请求,直接响应
if (server.masterhost && server.repl_slave_ro &&
    // master 请求除外,因为master过来的请求,是用于同步数据的
    !(c->flags & CLIENT_MASTER) &&
    c->cmd->flags & CMD_WRITE)
{
    // -READONLY You can't write against a read only slave.
    addReply(c, shared.roslaveerr);
    return C_OK;
}
...
return C_OK;

}

所以,redis主从模式下,服务端并不做转发处理。而要实现读写分离的功能,必然要客户端自行处理了。比如要自行定位master节点,然后将写请求发送过去,读请求则可以做负载均衡处理。这也是很多数据库中间件的职责所在。

返回顶部
3. 如何使用redis集群?
redis集群,本质上提供了数据的分片存储能力(当然要实现这个功能有相当多的工作要做),但是访问数据需要客户端自行处理。所以,我们以jedis作为客户端,看看客户端都是如何利用集群的吧!测试用例如下:

@Test
public void testCluster() throws Exception {
    // 添加集群的服务节点Set集合
    Set<HostAndPort> hostAndPortsSet = new HashSet<HostAndPort>();
    // 添加节点
    hostAndPortsSet.add(new HostAndPort("192.168.1.103", 7000));
    hostAndPortsSet.add(new HostAndPort("192.168.1.103", 7001));
    hostAndPortsSet.add(new HostAndPort("192.168.1.103", 8000));
    hostAndPortsSet.add(new HostAndPort("192.168.1.103", 8001));
    hostAndPortsSet.add(new HostAndPort("192.168.1.103", 9000));
    hostAndPortsSet.add(new HostAndPort("192.168.1.103", 9001));

    // Jedis连接池配置
    JedisPoolConfig jedisPoolConfig = new JedisPoolConfig();
    // 最大空闲连接数, 默认8个
    jedisPoolConfig.setMaxIdle(5);
    // 最大连接数, 默认8个
    jedisPoolConfig.setMaxTotal(10);
    //最小空闲连接数, 默认0
    jedisPoolConfig.setMinIdle(0);
    // 获取连接时的最大等待毫秒数(如果设置为阻塞时BlockWhenExhausted),如果超时就抛异常, 小于零:阻塞不确定的时间,  默认-1
    jedisPoolConfig.setMaxWaitMillis(2000);
    //对拿到的connection进行validateObject校验
    jedisPoolConfig.setTestOnBorrow(true);
    // JedisCluster 会继承 JedisSlotBasedConnectionHandler, 即会处理 slot 定位问题
    JedisCluster jedis = new JedisCluster(hostAndPortsSet, jedisPoolConfig);
    String key = "key1";
    String value = "Value1";
    jedis.set(key, value);
    System.out.println("set a value to Redis over. " + key + "->" + value);
    value = jedis.get("key1");
    System.out.println("get a value from Redis over. " + key + "->" + value);
    jedis.close();
}

如上,就是jedis访问redis集群的方式了,sdk封装之后的应用,总是简单易用。主要就是通过 JedisCluster 进行访问即可。而与单机的redis访问的很大不同点,是在于数据key的定位上,我们可以详细看看。

如下是 JedisCluster 的类继承图:

与之对比的是 Jedis 的类继承图:

它们两个都实现的接口有: BasicCommands, Closeable, JedisCommands.

可见,cluster下的redis操作上,与普通的redis还是有许多不同的。不过,我们只想探讨的是,key如何定位的问题,所以一个set/get就够了。

// JedisCluster 初始化时会初始化 slot 信息到本地缓存中
// redis.clients.jedis.JedisClusterConnectionHandler#JedisClusterConnectionHandler

public JedisClusterConnectionHandler(Set nodes,

                                   final GenericObjectPoolConfig poolConfig, int connectionTimeout, int soTimeout, String password) {
this.cache = new JedisClusterInfoCache(poolConfig, connectionTimeout, soTimeout, password);
// 在初始化 JedisCluster 时,会先触发一次 slot 信息的拉取,以备后续使用
initializeSlotsCache(nodes, poolConfig, password);

}
private void initializeSlotsCache(Set startNodes, GenericObjectPoolConfig poolConfig, String password) {

for (HostAndPort hostAndPort : startNodes) {
  Jedis jedis = new Jedis(hostAndPort.getHost(), hostAndPort.getPort());
  if (password != null) {
    jedis.auth(password);
  }
  try {
    // 只要某个节点成功响应,就够了
    // 遍历的目的,是为了高可用保证,为了避免某些节点故障而拿不到信息
    cache.discoverClusterNodesAndSlots(jedis);
    break;
  } catch (JedisConnectionException e) {
    // try next nodes
  } finally {
    if (jedis != null) {
      jedis.close();
    }
  }
}

}

// set 的操作,则是使用 JedisClusterCommand 包装了一层 Jedis
// redis.clients.jedis.JedisCluster#set(java.lang.String, java.lang.String)

@Override
public String set(final String key, final String value) {

  // connectionHandler 是 JedisSlotBasedConnectionHandler 的实例
  // 默认重试次数: 5
return new JedisClusterCommand<String>(connectionHandler, maxAttempts) {
  @Override
  public String execute(Jedis connection) {
    return connection.set(key, value);
  }
}.run(key);

}
// redis.clients.jedis.JedisClusterCommand#run(java.lang.String)
public T run(String key) {

if (key == null) {
  throw new JedisClusterException("No way to dispatch this command to Redis Cluster.");
}

return runWithRetries(SafeEncoder.encode(key), this.maxAttempts, false, false);

}
// 带重试的访问 redis 节点, 重试的场景有:数据节点不在访问节点; 访问的节点正在进行数据迁移; 访问节点不可用;
// redis.clients.jedis.JedisClusterCommand#runWithRetries
private T runWithRetries(byte[] key, int attempts, boolean tryRandomNode, boolean asking) {

if (attempts <= 0) {
  throw new JedisClusterMaxRedirectionsException("Too many Cluster redirections?");
}

Jedis connection = null;
try {

  if (asking) {
    // TODO: Pipeline asking with the original command to make it
    // faster....
    connection = askConnection.get();
    connection.asking();

    // if asking success, reset asking flag
    asking = false;
  } else {
    if (tryRandomNode) {
      connection = connectionHandler.getConnection();
    } else {
        // 直接调用 connectionHandler.getConnectionFromSlot 获取对应的redis连接
        // 此处计算的 slot 就是redis服务端实现的那套 crc16 % 0x3FFF, 即各端保持一致,就可以做出相同的判定了
      connection = connectionHandler.getConnectionFromSlot(JedisClusterCRC16.getSlot(key));
    }
  }

  return execute(connection);

} catch (JedisNoReachableClusterNodeException jnrcne) {
  throw jnrcne;
} catch (JedisConnectionException jce) {
  // release current connection before recursion
  releaseConnection(connection);
  connection = null;

  if (attempts <= 1) {
    //We need this because if node is not reachable anymore - we need to finally initiate slots renewing,
    //or we can stuck with cluster state without one node in opposite case.
    //But now if maxAttempts = 1 or 2 we will do it too often. For each time-outed request.
    //TODO make tracking of successful/unsuccessful operations for node - do renewing only
    //if there were no successful responses from this node last few seconds
    this.connectionHandler.renewSlotCache();

    //no more redirections left, throw original exception, not JedisClusterMaxRedirectionsException, because it's not MOVED situation
    throw jce;
  }
    // 连接异常,再次请求随机节点
  return runWithRetries(key, attempts - 1, tryRandomNode, asking);
} catch (JedisRedirectionException jre) {
  // if MOVED redirection occurred,
  if (jre instanceof JedisMovedDataException) {
    // it rebuilds cluster's slot cache
    // recommended by Redis cluster specification
    this.connectionHandler.renewSlotCache(connection);
  }

  // release current connection before recursion or renewing
  releaseConnection(connection);
  connection = null;

  if (jre instanceof JedisAskDataException) {
    asking = true;
    askConnection.set(this.connectionHandler.getConnectionFromNode(jre.getTargetNode()));
  } else if (jre instanceof JedisMovedDataException) {
  } else {
    throw new JedisClusterException(jre);
  }
    // 收到 MOVED/ASK 响应,刷新slot信息后,重新再访问
  return runWithRetries(key, attempts - 1, false, asking);
} finally {
  releaseConnection(connection);
}

}
// 计算hashSlot值
// redis.clients.util.JedisClusterCRC16#getSlot(byte[])
public static int getSlot(byte[] key) {

int s = -1;
int e = -1;
boolean sFound = false;
for (int i = 0; i < key.length; i++) {
  if (key[i] == '{' && !sFound) {
    s = i;
    sFound = true;
  }
  if (key[i] == '}' && sFound) {
    e = i;
    break;
  }
}
if (s > -1 && e > -1 && e != s + 1) {
  return getCRC16(key, s + 1, e) & (16384 - 1);
}
return getCRC16(key) & (16384 - 1);

}
// 根据hashSlot, 得到对应的 redis 连接实例
@Override
public Jedis getConnectionFromSlot(int slot) {

  // 先从缓存中获取slot对应的连接信息,初始时自然是空的
JedisPool connectionPool = cache.getSlotPool(slot);
if (connectionPool != null) {
  // It can't guaranteed to get valid connection because of node
  // assignment
  return connectionPool.getResource();
} else {
    // 刷新slot缓存信息,大概就是请求 cluster slot, 获取slot的分布信息,然后存入JedisClusterInfoCache中
  renewSlotCache(); //It's abnormal situation for cluster mode, that we have just nothing for slot, try to rediscover state
  connectionPool = cache.getSlotPool(slot);
  // 如果还是获取不到,则随机选择一个连接
  // 此时请求该随机节点,服务端有可能会响应正确的节点位置信息
  if (connectionPool != null) {
    return connectionPool.getResource();
  } else {
    //no choice, fallback to new connection to random node
    return getConnection();
  }
}

}

// redis.clients.jedis.JedisClusterConnectionHandler#renewSlotCache()

public void renewSlotCache() {

cache.renewClusterSlots(null);

}
// redis.clients.jedis.JedisClusterInfoCache#renewClusterSlots
public void renewClusterSlots(Jedis jedis) {

//If rediscovering is already in process - no need to start one more same rediscovering, just return
if (!rediscovering) {
  try {
    w.lock();
    rediscovering = true;

    if (jedis != null) {
      try {
        discoverClusterSlots(jedis);
        return;
      } catch (JedisException e) {
        //try nodes from all pools
      }
    }
    // 依次遍历集群节点,直到有一个正确的响应为止
    for (JedisPool jp : getShuffledNodesPool()) {
      try {
        jedis = jp.getResource();
        discoverClusterSlots(jedis);
        return;
      } catch (JedisConnectionException e) {
        // try next nodes
      } finally {
        if (jedis != null) {
          jedis.close();
        }
      }
    }
  } finally {
    rediscovering = false;
    w.unlock();
  }
}

}

private void discoverClusterSlots(Jedis jedis) {

// 发送 cluster slots, 命令,获取 slot 分布信息
List<Object> slots = jedis.clusterSlots();
this.slots.clear();

for (Object slotInfoObj : slots) {
  List<Object> slotInfo = (List<Object>) slotInfoObj;

/* Format: 1) 1) start slot
 *            2) end slot
 *            3) 1) master IP
 *               2) master port
 *               3) node ID
 *            4) 1) replica IP
 *               2) replica port
 *               3) node ID
 *           ... continued until done
 */
  if (slotInfo.size() <= MASTER_NODE_INDEX) {
    continue;
  }

  List<Integer> slotNums = getAssignedSlotArray(slotInfo);

  // hostInfos
  // 第三个元素是 master 信息
  List<Object> hostInfos = (List<Object>) slotInfo.get(MASTER_NODE_INDEX);
  if (hostInfos.isEmpty()) {
    continue;
  }

  // at this time, we just use master, discard slave information
  HostAndPort targetNode = generateHostAndPort(hostInfos);
  // 只存储master信息
  assignSlotsToNode(slotNums, targetNode);
}

}

private List getAssignedSlotArray(List

List<Integer> slotNums = new ArrayList<Integer>();
// 依次将所管辖slot范围,添加到列表中
// 如 0 ~ 5999
for (int slot = ((Long) slotInfo.get(0)).intValue(); slot <= ((Long) slotInfo.get(1))
    .intValue(); slot++) {
  slotNums.add(slot);
}
return slotNums;

}
// 将所有给定的 slot, 放到 targetNode 的管辖范围,方便后续获取
// redis.clients.jedis.JedisClusterInfoCache#assignSlotsToNode
public void assignSlotsToNode(List targetSlots, HostAndPort targetNode) {

// 此处的锁为读写锁 ReentrantReadWriteLock 中的 writeLock
w.lock();
try {
    // 创建redis连接
  JedisPool targetPool = setupNodeIfNotExist(targetNode);
  // 依次将范围内的slot指向 targetNode
  // 正常情况下,slots的大小应该都是16384
  for (Integer slot : targetSlots) {
    // slots = new HashMap<Integer, JedisPool>();
    slots.put(slot, targetPool);
  }
} finally {
  w.unlock();
}

}
// redis.clients.jedis.JedisClusterInfoCache#setupNodeIfNotExist(redis.clients.jedis.HostAndPort)
public JedisPool setupNodeIfNotExist(HostAndPort node) {

w.lock();
try {
  String nodeKey = getNodeKey(node);
  JedisPool existingPool = nodes.get(nodeKey);
  if (existingPool != null) return existingPool;

  JedisPool nodePool = new JedisPool(poolConfig, node.getHost(), node.getPort(),
      connectionTimeout, soTimeout, password, 0, null, false, null, null, null);
  nodes.put(nodeKey, nodePool);
  return nodePool;
} finally {
  w.unlock();
}

}
// 刷新slot缓存信息后,再重新请求获取redis连接就简单了
// redis.clients.jedis.JedisClusterInfoCache#getSlotPool
public JedisPool getSlotPool(int slot) {

r.lock();
try {
  return slots.get(slot);
} finally {
  r.unlock();
}

}

从上面的描述,我们清楚了整个客户如何处理集群请求的。整体就两个步骤: 1. 通过 cluster slot 获取redis集群的slot分布信息,然后缓存到本地; 2. 根据slot分布信息,向对应的redis节点发起请求即可。

另外,还有些意外情况,即客户端拿到的 slot 信息如果是错误的怎么办?如何保持客户端缓存与服务端的一致性?

事实上,客户端既不保证slot信息的准确性,也不保证与服务端数据的一致性,而是在发生错误的时候,再进行刷新即可。通过 JedisClusterCommand#runWithRetries, 进行错误重试,slot数据刷新。

返回顶部
4. 通常的请求转发如何实现?
可以看到,redis实际上一直避开了转发这个问题。

那么,实际中,我们的转发工作都是如何实现的呢?

最简单的,接收到客户端的请求之后,将数据重新封装好,然后构建一个目标地址的新请求,发送过去,然后等待结果响应。当目标服务器响应后,再将结果响应给客户端即可。如:应用网关、代理服务器;

其次,是响应客户端一个状态码(如302),让客户端自主进行跳转。这和redis实现倒是如出一辙;

相对复杂的,直接使用流进行对接,接收到客户端的请求后,直接将数据传到目标服务器,同样,目标服务器响应后,直接将数据写入客户端通道即可。这种情况避免大量数据的重新封装,极大减少了转发带来的性能损失,从而提高响应速度。这种场景,一般用于传输大文件。

原文地址https://www.cnblogs.com/yougewe/p/12546817.html

www.htsjk.Com true http://www.htsjk.com/redis/42580.html NewsArticle redis请求转发的实现, Redis(十二):redis请求转发的实现 目录 集群模式下的命令转发如何实现? 主从模式的命令转发如何实现? 3. 如何使用redis集群? 4. 通常的请求转发如何实现?...
评论暂时关闭