欢迎投稿

今日深度:

HBase的基础知识,

HBase的基础知识,


HBase

HBase很适合于存储非结构化的数据,还有就是它基于列的而不是基于行的模式。

RowKey,列族,时间戳(),cell

HBase系统架构:

 

 

Region:

region按大小分割的,每个表一开始只有一个region,随着数据不断插入表,region不断增大,当增大到一个阀值的时候,Hregion就会等分会两个新的Hregion。当table中的行不断增多,就会有越来越多的Hregion。

HRegion虽然是分布式存储的最小单元,但并不是存储的最小单元。

事实上,HRegion由一个或者多个Store组成,每个store保存一个columns family。

每个Strore又由一个memStore和0至多个StoreFile组成。toreFile以HFile格式保存在HDFS上。

 

Client:

1 包含访问hbase的接口,client维护着一些cache来加快对hbase的访问,比如regione的位置信息。

Zookeeper:

1 保证任何时候,集群中只有一个master

2 存贮所有Region的寻址入口。

3 实时监控Region Server的状态,将Region server的上线和下线信息实时通知给Master

4 存储Hbase的schema,包括有哪些table,每个table有哪些column family

Master:

1 为Region server分配region

2 负责region server的负载均衡

3 发现失效的region server并重新分配其上的region

4 GFS上的垃圾文件回收

5 处理schema更新请求

Region Server:

1 Region server维护Master分配给它的region,处理对这些region的IO请求

2 Region server负责切分在运行过程中变得过大的region

可以看到,client访问hbase上数据的过程并不需要master参与(寻址访问zookeeper和region server,数据读写访问regione server),master仅仅维护者table和region的元数据信息,负载很低。

 

 

HFile的格式为:

 

 

HFile分为六个部分:

Data Block 段(数据块)–保存表中的数据,这部分可以被压缩

Meta Block 段 (可选的)(元数据块)–保存用户自定义的kv对,可以被压缩。

File Info 段–Hfile的元信息,不被压缩,用户也可以在这一部分添加自己的元信息。

Data Block Index 段–Data Block的索引。每条索引的key是被索引的block的第一条记录的key。

Meta Block Index段 (可选的)–Meta Block的索引。

HLog(WAL log):

Hlog记录数据的所有变更,一旦数据修改,就可以从log中进行恢复。

每 个Region Server维护一个Hlog,而不是每个Region一个。这样不同region(来自不同table)的日志会混在一起,这样做的目的是不断追加单个 文件相对于同时写多个文件而言,可以减少磁盘寻址次数,因此可以提高对table的写性能。带来的麻烦是,如果一台region server下线,为了恢复其上的region,需要将region server上的log进行拆分,然后分发到其它region server上进行恢复。

HLog 文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是HLogKey对象,HLogKey中记录了写入数据的归属信息,除了table和region名字外,同时还包括 sequence number和timestamp,timestamp是”写入时间”,sequence number的起始值为0,或者是最近一次存入文件系统中sequence number。HLog Sequece File的Value是HBase的KeyValue对象,即对应HFile中的KeyValue,

client读写过程:

hbase使用MemStore和StoreFile存储对表的更新:

数 据在更新时首先写入Log(WAL log)和内存(MemStore)中,MemStore中的数据是排序的,当MemStore累计到一定阈值时,就会创建一个新的MemStore,并 且将老的MemStore添加到flush队列,由单独的线程flush到磁盘上,成为一个StoreFile。于此同时,系统会在zookeeper中 记录一个redo point,表示这个时刻之前的变更已经持久化了。(minor compact)

当系统出现意外时,可能导致内存(MemStore)中的数据丢失,此时使用Log(WAL log)来恢复checkpoint之后的数据。

前面提到过StoreFile是只读的,一旦创建后就不可以再修改。因此Hbase的更新其实是不断追加的操作。当一个Store中的StoreFile达到一定的阈值后,就会进行一次合并(major compact),将对同一个key的修改合并到一起,形成一个大的StoreFile,当StoreFile的大小达到一定阈值后,又会对StoreFile进行split,等分为两个StoreFile。

由于对表的更新是不断追加的,处理读请求时,需要访问Store中全部的StoreFile和MemStore,将他们的按照row key进行合并,由于StoreFile和MemStore都是经过排序的,并且StoreFile带有内存中索引,合并的过程还是比较快。

写请求处理过程

1 client向region server提交写请求

2 region server找到目标region

3 region检查数据是否与schema一致

4 如果客户端没有指定版本,则获取当前系统时间作为数据版本

5 将更新写入WAL log

6 将更新写入Memstore

7 判断Memstore的是否需要flush为Store文件。

region分配

任何时刻,一个region只能分配给一个region server。master记录了当前有哪些可用的region server。以及当前哪些region分配给了哪些region server,哪些region还没有分配。当存在未分配的region,并且有一个region server上有可用空间时,master就给这个region server发送一个装载请求,把region分配给这个region server。region server得到请求后,就开始对此region提供服务。

region server上线

master 使用zookeeper来跟踪region server状态。当某个region server启动时,会首先在zookeeper上的server目录下建立代表自己的文件,并获得该文件的独占锁。由于master订阅了server 目录上的变更消息,当server目录下的文件出现新增或删除操作时,master可以得到来自zookeeper的实时通知。因此一旦region server上线,master能马上得到消息。

region server下线

当region server下线时,它和zookeeper的会话断开,zookeeper而自动释放代表这台server的文件上的独占锁。而master不断轮询 server目录下文件的锁状态。如果master发现某个region server丢失了它自己的独占锁,(或者master连续几次和region server通信都无法成功),master就是尝试去获取代表这个region server的读写锁,一旦获取成功,就可以确定:1 region server和zookeeper之间的网络断开了。

2 region server挂了。

的其中一种情况发生了,无论哪种情况,region server都无法继续为它的region提供服务了,此时master会删除server目录下代表这台region server的文件,并将这台region server的region分配给其它还活着的同志。

如果网络短暂出现问题导致region server丢失了它的锁,那么region server重新连接到zookeeper之后,只要代表它的文件还在,它就会不断尝试获取这个文件上的锁,一旦获取到了,就可以继续提供服务。

master上线

master启动进行以下步骤:

1 从zookeeper上获取唯一一个代码master的锁,用来阻止其它master成为master。

2 扫描zookeeper上的server目录,获得当前可用的region server列表。

3 和2中的每个region server通信,获得当前已分配的region和region server的对应关系。

4 扫描.META.region的集合,计算得到当前还未分配的region,将他们放入待分配region列表。

master下线

由 于master只维护表和region的元数据,而不参与表数据IO的过程,master下线仅导致所有元数据的修改被冻结(无法创建删除表,无法修改表 的schema(),无法进行region的负载均衡,无法处理region上下线,无法进行region的合并,唯一例外的是region的split可以 正常进行,因为只有region server参与),表的数据读写还可以正常进行。因此master下线短时间内对整个hbase集群没有影响。从上线过程可以看到,master保存的 信息全是可以冗余信息(都可以从系统其它地方收集到或者计算出来),因此,一般hbase集群中总是有一个master在提供服务,还有一个以上 的’master’在等待时机抢占它的位置。

 

HBase的RowKey设计

Rowkey是一个二进制码流,采用的字典排序,长度是64字节。

注意:字典排序对int排序的结果是1,10,100,11,12,13,19,20,21.。。。。。要想保持整形的自然序,行键必须用0作左补充。

 

RowKey应用场景

.1 针对事务数据Rowkey设计

事务数据是带时间属性的,建议将时间信息存入到Rowkey中,这有助于提示查询检索速度。对于事务数据建议缺省就按天为数据建表,这样设计的好处是多方面的。按天分表后,时间信息就可以去掉日期部分只保留小时分钟毫秒,这样4个字节即可搞定。加上散列字段2个字节一共6个字节即可组成唯一 Rowkey。如下图所示:

事务数据Rowkey设计

第0字节

第1字节

第2字节

第3字节

第4字节

第5字节

散列字段

时间字段(毫秒)

扩展字段

0~65535(0x0000~0xFFFF)

0~86399999(0x00000000~0x05265BFF)

这样的设计从操作系统内存管理层面无法节省开销,因为64位操作系统是必须8字节对齐。但是对于持久化存储中Rowkey部分可以节省25%的开销。也许有人要问为什么不将时间字段以主机字节序保存,这样它也可以作为散列字段了。这是因为时间范围内的数据还是尽量保证连续,相同时间范围内的数据查找的概率很大,对查询检索有好的效果,因此使用独立的散列字段效果更好,对于某些应用,我们可以考虑利用散列字段全部或者部分来存储某些数据的字段信息,只要保证相同散列值在同一时间(毫秒)唯一。

2 针对统计数据的Rowkey设计

统计数据也是带时间属性的,统计数据最小单位只会到分钟(到秒预统计就没意义了)。同时对于统计数据我们也缺省采用按天数据分表,这样设计的好处无需多说。按天分表后,时间信息只需要保留小时分钟,那么0~1400只需占用两个字节即可保存时间信息。由于统计数据某些维度数量非常庞大,因此需要4个字节作为序列字段,因此将散列字段同时作为序列字段使用也是6个字节组成唯一Rowkey。如下图所示:

统计数据Rowkey设计

第0字节

第1字节

第2字节

第3字节

第4字节

第5字节

散列字段(序列字段)

时间字段(分钟)

扩展字段

0x00000000~0xFFFFFFFF)

0~1439(0x0000~0x059F)

同样这样的设计从操作系统内存管理层面无法节省开销,因为64位操作系统是必须8字节对齐。但是对于持久化存储中Rowkey部分可以节省25%的开销。预统计数据可能涉及到多次反复的重计算要求,需确保作废的数据能有效删除,同时不能影响散列的均衡效果,因此要特殊处理。

3 针对通用数据的Rowkey设计

通用数据采用自增序列作为唯一主键,用户可以选择按天建分表也可以选择单表模式。这种模式需要确保同时多个入库加载模块运行时散列字段(序列字段)的唯一性。可以考虑给不同的加载模块赋予唯一因子区别。设计结构如下图所示。

通用数据Rowkey设计

第0字节

第1字节

第2字节

第3字节

散列字段(序列字段)

扩展字段(控制在12字节内)

0x00000000~0xFFFFFFFF)

可由多个用户字段组成

2.2.4 支持多条件查询的RowKey设计

HBase按指定的条件获取一批记录时,使用的就是scan方法。 scan方法有以下特点:

(1)scan可以通过setCaching与setBatch方法提高速度(以空间换时间);

(2)scan可以通过setStartRow与setEndRow来限定范围。范围越小,性能越高。

通过巧妙的RowKey设计使我们批量获取记录集合中的元素挨在一起(应该在同一个Region下),可以在遍历结果时获得很好的性能。

(3)scan可以通过setFilter方法添加过滤器,这也是分页、多条件查询的基础。

在满足长度、三列、唯一原则后,我们需要考虑如何通过巧妙设计RowKey以利用scan方法的范围功能,使得获取一批记录的查询速度能提高。下例就描述如何将多个列组合成一个RowKey,使用scan的range来达到较快查询速度。

 

HBase的常用操作指令

Hbase shell :进入hbase操作界面

Help:帮助手册

Create ‘表名字’,‘列族’:创建表,列族

List:查看表

Describe ‘’:查看表结构

Put:添加数据

Get:查看/获取数据

Scan:扫描

 

HBase的rowkey的设计原则

HBase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这个三个维度可以对HBase中的数据进行快速定位。

HBase中rowkey可以唯一标识一行记录,在HBase查询的时候,有两种方式:

1、通过get方式,指定rowkey获取唯一一条记录 
2、通过scan方式,设置startRow和stopRow参数进行范围匹配

3、全表扫描,即直接扫描整张表中所有行记录。

rowkey长度原则:

rowkey是一个二进制码流,可以是任意字符串,最大长度64kb,实际应用中一般为10-100bytes,以byte[]形式保存,一般设计成定长。建议越短越好,不要超过16个字节,原因如下:

数据的持久化文件HFile中是按照KeyValue存储的,如果rowkey过长,比如超过100字节,1000w行数据,光rowkey就要占用100*1000w=10亿个字节,将近1G数据,这样会极大影响HFile的存储效率; 
MemStore将缓存部分数据到内存,如果rowkey字段过长,内存的有效利用率就会降低,系统不能缓存更多的数据,这样会降低检索效率。

目前操作系统都是64位系统,内存8字节对齐,控制在16个字节,8字节的整数倍利用了操作系统的最佳特性。

 

rowkey散列原则:(低位放时间字段+高位随机数值)

如果rowkey按照时间戳的方式递增,不要将时间放在二进制码的前面,建议将rowkey的高位作为散列字段,由程序随机生成,低位放时间字段,这样将提高数据均衡分布在每个RegionServer,以实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息,所有的数据都会集中在一个RegionServer上,这样在数据检索的时候负载会集中在个别的RegionServer上,造成热点问题,会降低查询效率。

rowkey唯一原则:

必须在设计上保证其唯一性,rowkey是按照字典顺序排序存储的,因此,设计rowkey的时候,要充分利用这个排序的特点,将经常读取的数据存储到一块,将最近可能会被访问的数据放到一块。

 

什么是热点:

HBase中的行是按照rowkey的字典顺序排序的,这种设计优化了scan操作,可以将相关的行以及会被一起读取的行存取在临近位置,便于scan。然而糟糕的rowkey设计是热点的源头。热点发生在大量的client直接访问集群的一个或极少数个节点(访问可能是读,写或者其他操作)。大量访问会使热点region所在的单个机器超出自身承受能力,引起性能下降甚至region不可用,这也会影响同一个RegionServer上的其他region,由于主机无法服务其他region的请求。设计良好的数据访问模式以使集群被充分,均衡的利用。

为了避免写热点,设计rowkey使得不同行在同一个region,但是在更多数据情况下,数据应该被写入集群的多个region,而不是一个。

 

常见的避免热点的方法以及它们的优缺点:

  • 加盐

这里所说的加盐不是密码学中的加盐,而是在rowkey的前面增加随机数,具体就是给rowkey分配一个随机前缀以使得它和之前的rowkey的开头不同。分配的前缀种类数量应该和你想使用数据分散到不同的region的数量一致。加盐之后的rowkey就会根据随机生成的前缀分散到各个region上,以避免热点。

  • 哈希

哈希会使同一行永远用一个前缀加盐。哈希也可以使负载分散到整个集群,但是读却是可以预测的。使用确定的哈希可以让客户端重构完整的rowkey,可以使用get操作准确获取某一个行数据

  • 反转

第三种防止热点的方法时反转固定长度或者数字格式的rowkey。这样可以使得rowkey中经常改变的部分(最没有意义的部分)放在前面。这样可以有效的随机rowkey,但是牺牲了rowkey的有序性。

反转rowkey的例子

以手机号为rowkey,可以将手机号反转后的字符串作为rowkey,这样的就避免了以手机号那样比较固定开头导致热点问题

  • 时间戳反转

一个常见的数据处理问题是快速获取数据的最近版本,使用反转的时间戳作为rowkey的一部分对这个问题十分有用,可以用Long.Max_Value - timestamp追加到key的末尾,例如[key][reverse_timestamp],[key]的最新值可以通过scan [key]获得[key]的第一条记录,因为HBase中rowkey是有序的,第一条记录是最后录入的数据。

比如需要保存一个用户的操作记录,按照操作时间倒序排序,在设计rowkey的时候,可以这样设计 
[userId反转][Long.Max_Value - timestamp],在查询用户的所有操作记录数据的时候,直接指定反转后的userId,startRow是[userId反转][000000000000],stopRow是[userId反转][Long.Max_Value - timestamp]

如果需要查询某段时间的操作记录,startRow是[user反转][Long.Max_Value - 起始时间],stopRow是[userId反转][Long.Max_Value - 结束时间]

 

从性能的角度谈table中family和qualifier的设置?

www.htsjk.Com true http://www.htsjk.com/hbase/39462.html NewsArticle HBase的基础知识, HBase HBase很适合于存储非结构化的数据,还有就是它基于列的而不是基于行的模式。 RowKey,列族,时间戳(),cell HBase系统架构:     Region: region按大小分割的,每个表...
相关文章
    暂无相关文章
评论暂时关闭